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Abstract 
 
In the last years, the LIDAR technique has been successfully 
applied to the detection of the smoke plume emitted by wild 
fires. Up to now, the attention has been devoted to early 
detection of quite concentrated smoke plumes to reveal the 
first stage of fires as soon as possible. In this paper, it is shown 
how the LIDAR technique can also cope with widespread 
smoke, which can be the consequence of strong wind 
dispersion or non-concentrated sources. To this end, 
innovative signal processing techniques are required. The 
proposed approach is able to detect, in a reliable way, the 
presence of widespread smoke in the backscattered signals of 
compact LIDAR systems. The first experimental evidence is 
encouraging and the potential of the proposed method is 
presented. 
 
 
1 The signature of widespread smoke in Lidar 
signals 
 
Wild fires have become a very serious problem in various 
parts of the world. The LIDAR technique has been 
successfully applied to the detection of the smoke plume 
emitted by wild fires, allowing the reliable survey of large 
areas [1, 2, 3, 15 ,16,19]. Recently, mobile compact systems 
have been successfully deployed in various environments. Up 
to now, the attention has been devoted to early detection of 
quite concentrated smoke plumes, characterising the first stage 
of fires, as soon as possible[4, 5, 6]. The main operational 
approach envisages the continuous monitoring of the area to 
be surveyed with a suitable laser [9, 11]. When a significant 
peak in the backscattered signal is detected, an alarm is 
triggered. In these applications, the backscattered signal 
presents strong peaks, which are detected with various 
techniques. In other applications, it would be interesting also 

to detect the non concentrated, widespread smoke, which can 
be the consequence of strong wind dispersion or non 
concentrated sources. In this case, the signature of the 
presence of the smoke is not a strong peak but a different 
slope in the tail of the backscattered signal. Typical examples 
of backscattered signals for the alternatives of no smoke, 
strong smoke plume and widespread smoke are shown in 
Figure 1.  

 
Figure 1 – Examples of LIDAR back scattered signals: a) No 
smoke (blue line) b) strong smoke plume (green line) c) 
widespread smoke (red line).  
 
As can be seen from the experimental signals shown in Figure 
1, the signature of non concentrated, widespread smoke is not 
a strong, concentrated peak in the decay phase of the detected 
power but an overall increase of the curve. This can be 
ascribed to an increase in the backscattering coefficient, as 
discussed in more detail in Section 4. The mechanism for the 
increased signal is therefore quite clear but, from a practical 
point of view, the discrimination between the two curves is 
quite challenging. To this end, innovative signal processing 
techniques have been deployed to filter the backscattered 
signal. The proposed approach is based on Support Vector 
Regression (SVR), a nonparametric technique to filter the data 



without any assumption about the nature of the noise. SVR is 
used as a way to clean the backscattered signals in order to 
allow reliable fitting. These methods should be able to detect, 
in a reliable and automatic way, the presence of widespread 
smoke in the backscattered signals of a compact LIDAR 
system. They can therefore be deployed for the automatic 
survey of large areas of vegetation.  
 
2 The Lidar station  

 
The measurements described in the paper have been 
performed with the mobile Lidar unit of Industrial 
Engineering Department, University of Rome "Tor Vergata” 
[8, 14]. The system consists of an easily transportable compact 
Lidar system. The transmitter is a Nd:YAG laser that can 
operate at three wavelengths: 1064, 532 and 355nm. The 532 
nm wavelength is not really suited for environmental 
surveying, since it is not eye safe and therefore requires 
specific authorizations to be deployed. The other two lines 
have been both used for particulate detection and there is not 
overwhelming reason to prefer one. On the other hand, the 
detectors in the UV are generally more performing than in the 
IR and therefore the 355 nm wavelength has been chosen for 
the experiments reported in this paper. It is worth mentioning 
that there is no reason to expect the 1096 to present any 
particular difference, as also confirmed by preliminary tests 
already performed.  
The laser is anchored at the receiver system, a Newtonian 
telescope, and both can move to direct the beam and receive 
the backscattered radiation over a whole hemisphere. The 
system is completely auto-powered and the structure is 
designed to be transportable and steerable. It is easily hooked 
to azimuth mount for supporting and rotating about two 
mutually perpendicular axes; one vertical, from -10° to 90°, 
and one horizontal, from 0° to 220°. By means of two step-
motors, it has a global angular resolution of 1.8°. Since the  
laser source is operating in the  UV region, the detector chosen 
is a Hamamatsu’s photomultiplier tube (PMT), R3235 model. 
These technologies have become relatively standard and 
therefore they can be procured at reasonable costs [18]. The 
main characteristics of the mobile unit are reported in Table 1. 
The entire apparatus is controlled by a software package, 
written in Labview and Matlab, explicitly developed for this 
application. The laser activation and the wavelength selection, 
together with the rotation of the telescope and data acquisition, 
is controlled by a Labview series of routines. The signal 
processing algorithms and the visualization of the results have 
been implemented using Matlab. The signal processing 
routines calculate the distance of the fire from the station and 
also show the fire topographic coordinates (essential for the 
coordination of timely intervention). 
The signals analysed in this paper have been collected during 
an extensive experimental campaign, which has been carried 
out in Calabria, in the south of Italy. 
 
 
 

Transmitter:  
Laser  Q-switch Nd:Yag 

Energy pulse at 355 nm 100 mJ 
Pulse time width 5 ns 
Divergence angle 0,5 mrad 
Pulse Frequency 10 Hz 

Receiver:  
Telescope type Newtonian 

Nominal focal length 1030 mm 
Primary mirror diameter 210 mm 

Detector Photomultiplier (PMT) 
Photocathode sensibility 72 mA/W 

Response time 30 ns 
 
  
Table 1. Parameters of Nd:Yag Lidar system [13]. 
  
3 Support vector regression for the first signal 
processing  

 
Support Vector Machines [14] are a very specific class of 
machine learning tools, whose characteristics are use of 
kernels, absence of local minima, sparseness of the solution 
and capacity control obtained by acting on the margins, or on 
the number of support vectors. They were invented by 
Vladimir Vapnik and his co-workers, and first introduced at 
the Computational Learning Theory (COLT) 1992 conference. 
All these nice features however were already present in 
machine learning since 1960’s. However it was not until 1992 
that all these features were combined to form the maximal 
margin classifier, the basic Support Vector Machine (SVM).  

SVM can be applied not only to classification problems 
but also to the case of regression [17]. Still they contain all the 
main features that characterize maximum margin algorithm: a 
non-linear function is learned by mapping into a high 
dimensional kernel induced feature space. In analogy with 
classification, there is an advantage in optimizing the 
generalization of the regression margins. This is achieved by 
defining a loss function that ignores errors, which are situated 
within a certain distance of the true value. This type of 
function is often called – epsilon intensive – loss function. 
Figure 2 shows an example of one-dimensional linear 
regression function with – epsilon intensive – band.  

 

 
 
Figure 2 – Example of an epsilon intensive loss function. 



 
The variables measure the cost of the errors at the training 

points. The errors are considered zero for all points that are 
inside the insensitive band. In SVM regression, the input x is 
first mapped onto a m-dimensional feature space, using some 
fixed (nonlinear) mapping, and then a linear model is 
constructed in this feature space. Mathematically, the linear 
model (in the feature space) f(x, ω) is given by  
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where gj(x), j=1,…,m denotes a set of nonlinear 

transformations, and b is the “bias” term. Often the data are 
assumed to be zero mean (this can be achieved by 
preprocessing), so the bias term is dropped. The quality of the 
estimation is measured by the loss function L(y, f(x,ω)). SVM 
regression uses a new type of loss function, called ε-
insensitive loss function, introduced by Vapnik: 
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The so called empirical risk can be calculated as: 
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SVM regression performs linear regression in the high-

dimension feature space using -insensitive loss and, at the 
same time, tries to reduce model complexity by 
minimizing 2 . This can be implemented by introducing 

slack variables niii ,...1, * , to measure the deviation of 
training samples outside -insensitive zone. Thus SVM 
regression is formulated as minimization of the functional: 
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This optimization problem can translated into the dual 
problem and its solution is given by  
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where SVn  is the number of Support Vectors (SVs) and the 
kernel function 
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It is well known that SVM generalization performance 

depends on the choice of meta-parameters 
parameters C,  and the kernel parameters. Selecting a 
particular kernel type and kernel function parameters is 
usually based on application-specific knowledge and also 
should reflect distribution of the training data. 
Parameter C determines the trade off between the model 
complexity (smoothness) and the degree to which deviations 
larger than ε are tolerated. For example, if C is too large, then 
the objective is reduced to minimizing the empirical risk only, 
without regard to model complexity. Parameter ε controls the 
width of the  -insensitive zone, used to fit the training data. 
The value of  can affect the number of support vectors used 
to construct the regression function. The bigger , the fewer 
support vectors are selected. On the other hand, bigger ε-
values results in smother estimates. Hence, both C and -
values affect model complexity [18]. 
 
4 First analysis of Lidar experimental data 

 
One of the advantages of  Support Vector Regression consists 
of the fact that its parameters can be chosen without detailed 
knowledge of the noise superimposed on the signal. Only the 
amplitude of the noise really matters, because typically it 
affects the choice of parameter . Moreover, this filtering 
technique is quite robust to variations in the details of the 
noise as has already been demonstrated in other applications 
of LIDAR detection. [10,12,13]. The quality of the signals 
after filtering can be appreciated in Figure 3. At this point, it is 
relatively easy to perform a fitting of the signals and, when the 
maximum of the signal is above a certain threshold, a warning 
of widespread smoke can be issued.  
 

 
Figure 3 – The experimental signals after filtering with SVR. 
The case without smoke is in red. The signal for the case with 
widespread smoke is in blue. 
 

Starting from the typical Lidar equation [8], it has 
been decided to fit the decaying part of the backscattered 
signal intensity with a mathematical expression of the form: 
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where K1 and K2 are constants and R is the range. The data of 
Figure 3 have been fitted with this formula. The results of the 
non –linear fit are:   

- In case of widespread smoke: 
 

 
 (9) 

 
- No smoke: 

 
 (10) 

 
The results of the fit, equations (9) and (10), indicate 

quite clearly that the parameter K2 is practically the same for 
both the case of widespread smoke and clear atmosphere. On 
the other hand, there is a clear difference, of the order of 25% 
in the constants K1. This is expected since K1 includes the 
effect of the coefficient , which indeed quantifies the 
backscattering properties of the atmosphere [5]. 
 
5 Conclusions and further developments 
 
As shown in the previous section, SVR is a sophisticated 
technique to filter the backscattered signals of LIDAR 
systems. If this filtering step is successful, it is relatively easy 
to fit the signals and calculate their maximum. On the basis of 
the value of this maximum, a decision can be made about the 
presence of widespread smoke. The effectiveness of the 
approach will therefore depend on the accuracy and reliability 
of the first filtering step. The first results are encouraging but a 
wider statistical study is necessary. In this perspective more 
examples of widespread smoke will have to be collected. Also, 
in practical applications, the power output of the laser will 
have to be monitored to make sure that the changes in the 
amplitude of the received signals are really due to variations in 
the atmosphere and not drifts in the system.   
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